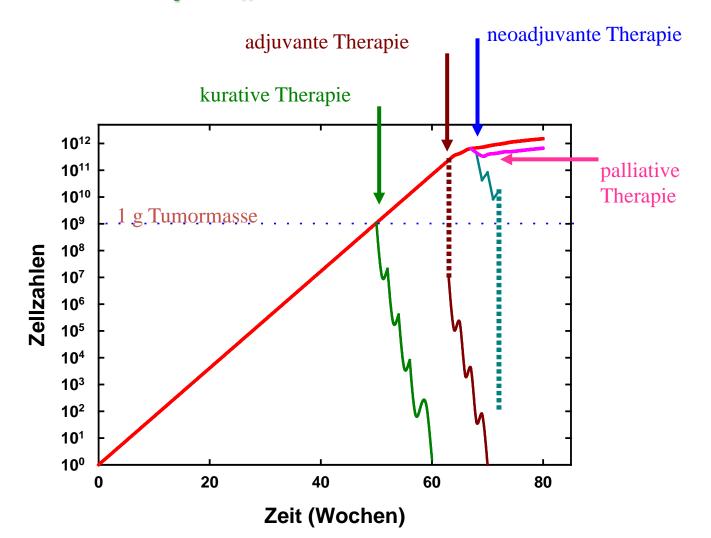
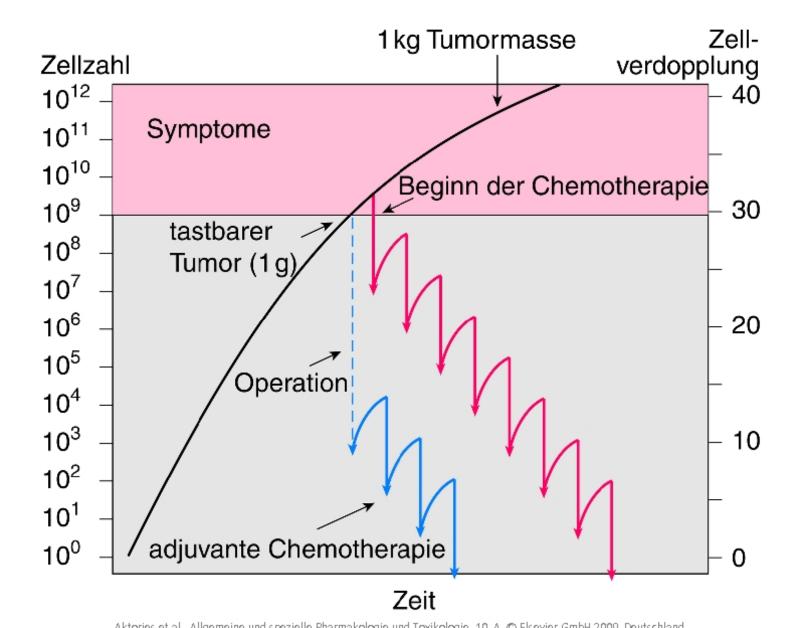
Tumorchemotherapie


Antineoplastika


Tumorgenese

- Mutationen in Tumorsuppressor- bzw. Tumorpromotergenen
- Deregulation des Zellzyklus
- Unabhängigkeit von äußeren Wachstumsfaktoren
- Unempfindlichkeit gegenüber Apoptose- und Hemmungssignalen
- Angiogenese
- Telomeraseaktivität
- Immunevasion
- Metastasierung

Therapie maligner Erkrankungen - *Zielsetzung?*Therapieformen

Kurative Therapie: "fractional cell kill"

Therapie maligner Erkrankungen - Zielsetzung?

Therapieformen

Kurative Therapie: Heilung, Lebenszeitverlängerung

Palliative Therapie: Linderung Tumor-bedingter

Symptome & begrenzte

Lebenszeitverlängerung

Adjuvante Therapie: primär chirurgisch, chemotherap.

Nachbehandlung

• neo-adjuvante Therapie: reduziert Tumorgröße vor chirurg.

Eingriff

Chemoprophylaxe: z.B. bei Mamma-Ca (Tamoxifen)

Fractional cell kill

- Es wird mit jeder Applikation konstanter Prozentsatz an Zellen getötet
- Bspl.: Tumor mit 10¹¹ Zellen, 99% durch Chemotherapie getötet
 - nach 1. Therapie: 10⁹ Zellen
 - nach 2. Therapie: 10⁷ Zellen -> Tumor "nicht" nachweisbar -> Therapie trotzdem fortsetzen!
- Polychemotherapie erhöht fractional cell kill und beugt Resistenzen vor.
- Je schneller Tumor wächst, desto besser behandelbar!

Zytostatika: Einteilung der Gruppen

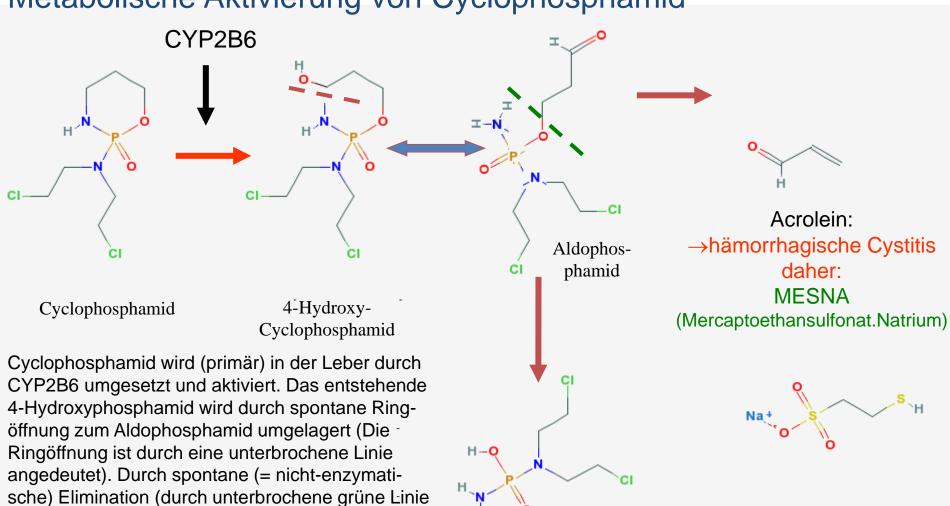
- 1. Alkylierende Verbindungen & andere Quervernetzer
- 2. Antimetabolite
- 3. Vincaalkaloide und ähnliche
- 4. Interkalierende Antibiotika und ähnliche
- 5. Andere (= nicht gut klassifizierbar)
- 6. Hormonelle Therapie
- 7. Zytokine Biological Response Modifiers
- 8. Signaltransduktionshemmer Signal Interceptors

Zytostatika: Einteilung der Gruppen

Tumorresitenzmechanismen

- Verminderte zelluläre Aufnahme
- Verstärkte Inaktivierung
- Verminderte Aktivierung
- Verstärkte DNA-Reparatur
- Veränderung der Zielstruktur
- Überexpression des Zielproteins
- Verstärkter Auswärtstransport

Alkylierende Verbindungen


- DNA wird mit Alkylgruppen (CH₃ Gruppen) versehen
- Meiste bifunktionelle Gruppen sodass, Intrabzw. Interstrangquervernetzung erfolgt -> p53
 -> Apoptose.
- Zellzyklusunabhängige Wirkung

1. Alkylierende Verbindungen & andere Quervernetzer:

Metabolische Aktivierung von Cyclophosphamid

angedeutet) von Acrolein entsteht das Alkylans, der Phosphoramid-Lost. Acrolein erscheint rasch in der Harnblase und ist sehr toxisch für das Urothel. Die

hämorrhagische Zystitis kann aber verhindert

Phosphoramid-Lost

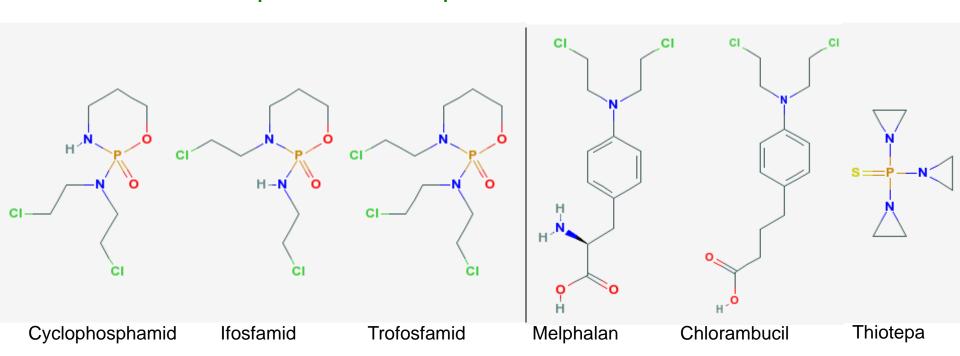
Cyclophosphamid

- N-Lost-Abkömmling
- PD: Alkylierung durch den aktiven Metaboliten Phosporsäureamid-Lost
- **NW**:
 - hämorrhagische Cystitis -> Antidot: MESNA
 - in hohen Dosen: hämorr. Myocardnekrosen nach ca. 10 Tagen
- Verwandte Substanzen: Ifosphamid (CYP3A4), Trophosphamid
- Ind: Zahlreiche Tumore, Immunsuppression

1. Alkylierende Verbindungen & andere Quervernetzer:

Wirkungsmechanismus = Alkylierung der Purin-/(Pyrimidin-)basen in der DNA + Quervernetzung:

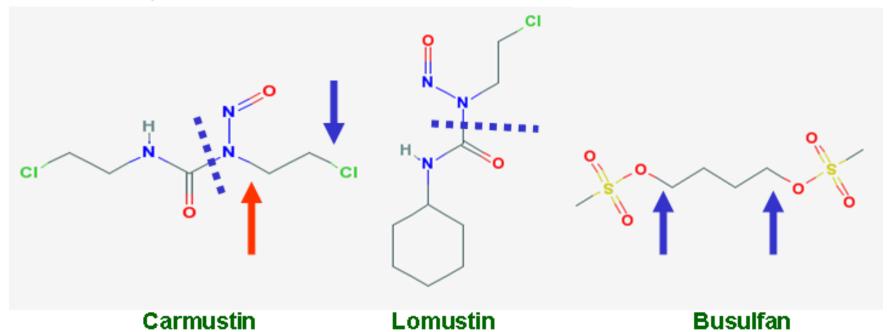
am besten bifunktionell = zweimaliger Einbau möglich & zwischen den Strängen = interstrand (DNA-repair = schwierig; Stränge gehen nicht auseinander etc.)


1.1. Abkömmlinge des N-LOST:

Cyclophosphamid, Ifosfamid, Trofosfamid

[Metabolit = Acrolein - hämorragische Zystitis - Zytoprotektion mit

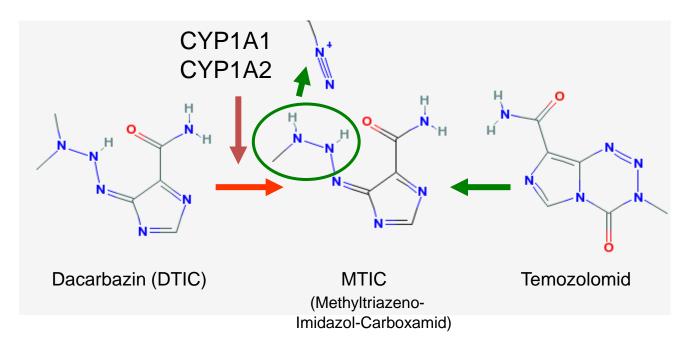
MESNA = Mercaptoethansulfonat als Natriumsalz]


Chlorambucil, Melphalan, Thiotepa

1. Alkylierende Verbindungen & andere Quervernetzer:

- 1.2. Alkylsulfonat: Busulfan, stark myelosuppressiv (KMT)
- 1.3. Nitrosoharnstoff-Derivate:

BCNU=Carmustin, CCNU=Lomustin, Semustin= Methyllomustin, sehr lipophil, ZNS-TU

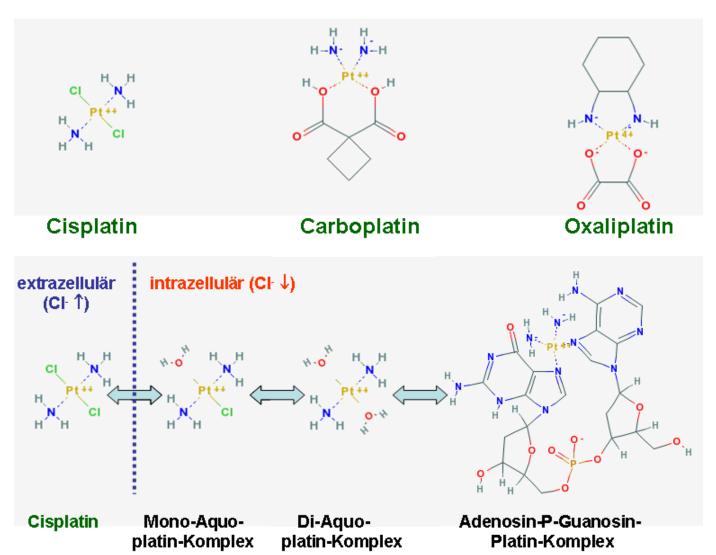

Bei den Nitrosoharnstoffderivaten Carmustin und Lomustin wird ein 2-Chloroethyl-Diazonium-Ion (durch unterbrochene blaue Linie markiert) freigesetzt. Dieses kann sequentiell rasch mit einem elektrophilen Sauerstoff (roter Pfeil, z.B. O an der Stelle 6 von Guanin) und langsamer mit einem N (blauer Pfeil, in jeder Base) reagieren, wodruch eine Quervernetzung entsteht. Bei Busulfan kann durch einen nukleophilen Angriff (eines Stickstoffs) die Methylsulfonsäure Gruppe freigesetzt werden und statt dessen eine kovalente Binding zwischen dem C-Atom von Busulfan und dem hereinkommenden N (z.B. von Guanin oder eines Proteins) geschlossen werden (durch blaue Pfeile markiert)

Weitere Alkylantien

- Busulfan
 - PD: Aklyl. von DNA, RNA und Protein
 - GST Kopplung und CYP Metabol.
 - **NW:** Lungenfibrose, Hyperpigmentierung, sehr lange KM-Suppr., Krampfanfälle
 - Ind: Vorbereitung auf KM-Transplant.
 - Verwandte Substanz: Treosulfan
- Nitrosoharnstoffverbindungen
 - Carmustin, Lomustin, Nimustin, Semustin
 - hohe Lipophilie -> ZNS Tumore
 - Alkyl. von DNA, Spaltprodukt (Isocyanat) reagiert mit Proteinen

1. Alkylierende Verbindungen & andere Quervernetzer:

- 1.2. Alkylsulfonat: Busulfan
 1.3. Nitrosobarra
- 1.3. Nitrosoharnstoff-Derivate: BCNU=Carmustin, CCNU=Lomustin, Semustin= Methyllomustin
- 1.4. Platinsalze: Cisplatin, Carboplatin
- 1.5 Triazene: Dacarbazin, Temozolomid

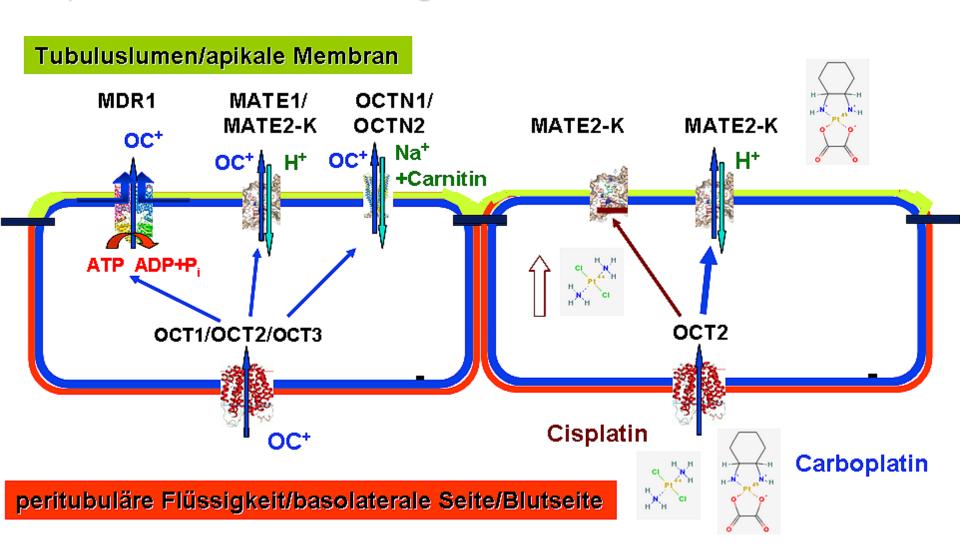

Dacarabazin und Temozolomid liefern spontan (grüne Pfeile) bzw. durch CYP-vermittelten Metabolismus (rote Pfeile) das methylierende Abbauprodukt Methyldiazonium.

Weitere Alkylantien - Hydrazinderviate bzw. Triazene

- Nicht bifunktionell, nur eine aktive Gruppe
- Aktiver Metabolit -> Diazomethan (Methydiazonium)
- Dacarbazin
 - CYP1A1, 1A2 metabol.
 - Malignes Melanom
 - geringe KM-Tox.
- Temozolomid: ZNS-gängig -> Glioblastom
- Procarbazin:
 - CYP metabol.
 - **NW:** MAO-Inhib., Disulfiram-Effekt, hohes Sekundärtumorrisikio

1. Alkylierende Verbindungen & andere Quervernetzer:

1.4. Platinsalze

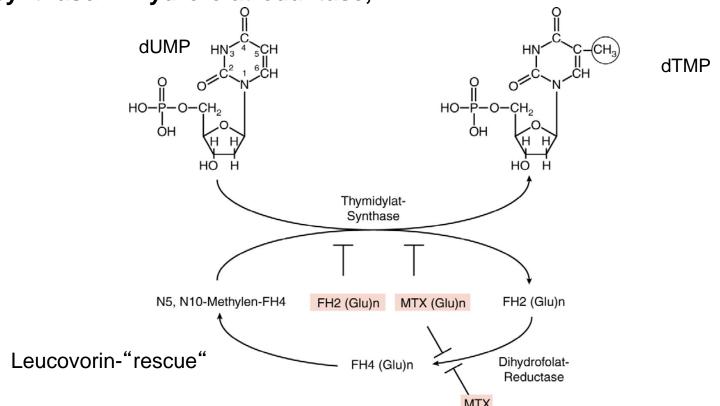

Der Mechanismus der Quervernetzung der DNA ist für Cisplatin gezeigt. Extrazellulär ist die Chloridkonzentration höher als intrazellulär; die Platinkomplexe dringen entweder über Diffusion oder über Transporter (z.B. Kupfertransport, OCT2) in die Zelle ein. In der Zelle ist die Chloridkonzentration niedrig. Im Komplex wird Chlorid durch Waser ersetzt; es entsteht der Mono- und Di-Aquoplatin-Komplex. Im Zellekrn ersetzen die N7-Atome von Guanin und Adenin das Wasser: es bildet sich ein Komplex, in dem Platin die DNA quervernetzt.

Platinverbindungen

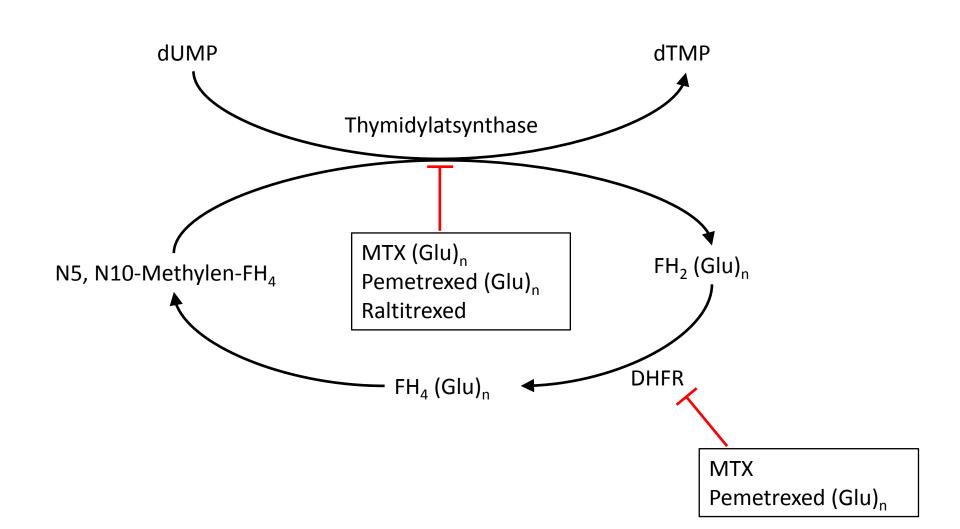
- **PD:** bifunktionelle Alykl., primär Intrastrang -über Cu⁺⁺-Transporter (CTR1) in Zelle
- PK: Aktivierung zu Di-Aquo-Platin-Komplex (Austausch von Cl⁻ durch H₂0 bzw. Hydrolyse)
- Cisplatin
 - **NW:** Nephrotox. (Antidot: Amifostin), Ototox., sehr stark Emetogen, Neurotox.
 - jedoch geringe KM-Tox.
- Carboplatin: stärker KM-Tox.
- Oxaliplatin:
 - Neurotox., vor allem durch Kältexposition
 - mismatch-repair unabhängige Apoptose
 - **zusätzliche PD:** ↓ Expression Thymidyaltsynthase

RENALE EXKRETION VON PHARMAKA

3) Tubuläre Sekretion von organischen Kationen


Antimetabolite

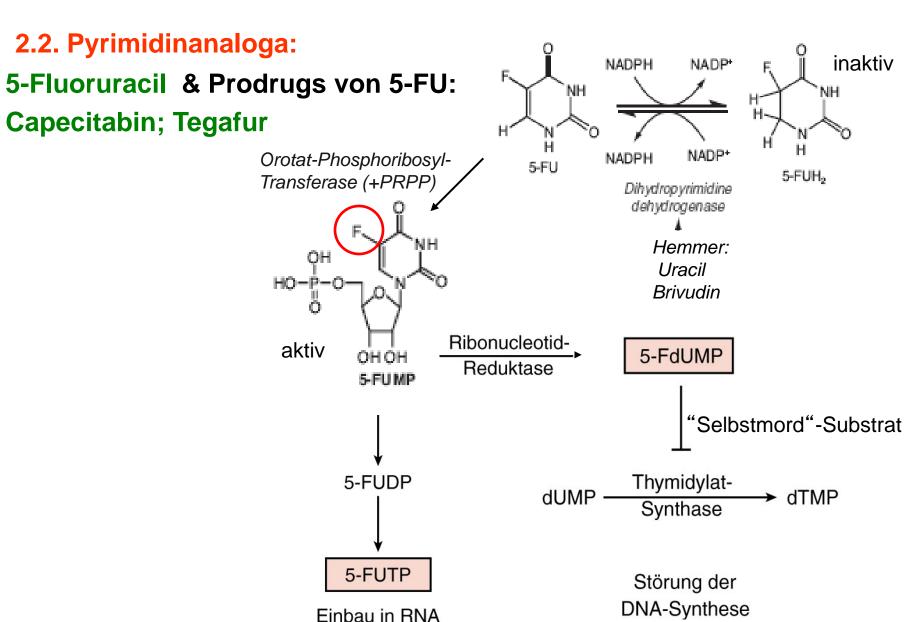
Hemmen DNA und RNA-Synthese


Wirkung primär in S-Phase

- Drei Gruppen:
 - Folsäure-Antagonisten
 - Purin- und Purinnucleosidanaloga
 - Pyrimidn- und Pyrimidinnucleosidanaloga

- 2. Antimetabolite: WM: Hemmung der DNA- oder RNA-Synthese
- 2.1. Folsäureantagonisten:
- Methotrexat = MTX: hemmt Dihydrofolatreduktase, Thymidylatsynthase, ...
- Raltitrexed ⇒ hemmt NUR Thymidilatsynthase
- Pemetrexed: gelangt über Transporter für reduziertes Folat (RFT/RFC) UND über Protonen-gekoppeltenTransporter (PCFT) in die Zellen; hemmt Thymidylatsynthase>Dihydrofolatreduktase, ...

Folsäure Antagonisten


Folsäureantagonisten

- Folsäuretransporter:
 - Folatrezeptor (FR)
 - reduced folate transporter (RFT)
 - proton coupled folate transporter (PCFT)
- Methotrexat:
 - Aufnahme in die Zellen durch RFT und Diffusion (hohe Dosen)
 - **PD:** Inhib. der Thymidylatsynthase, DHFR u. de-novo Purinsynthese
 - **NW:** Hepatotox., Nephrotox., Antidot: Carboxypeptidase G2, Pneumonie
 - Ind: breites Anwendungsspektrum
 - WW: NSAIDs, Cisplatin, Aminoglykoside,

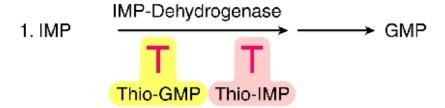
Folsäureantagonisten

- Pemetrexed:
 - Aufnahme in Zellen durch RFT und PCFT
 - **PD:** Inhib. der Thymidylatsynthase , DHFR u. de-novo Purinsynthese
 - Ind: Mesotheliom
- Raltirexed:
 - PD: Inhib. der Thymidylatsynthase
 - Ind: Palliativ bei Kolorektalem Karzinom
- Leucovorinrescue (Folinsäure)
 - Ca. 24 h nach Methotrexatapplikation, Leucovorin wird in gesunde Zellen aufgenommen u. antagonisiert Methotrexat

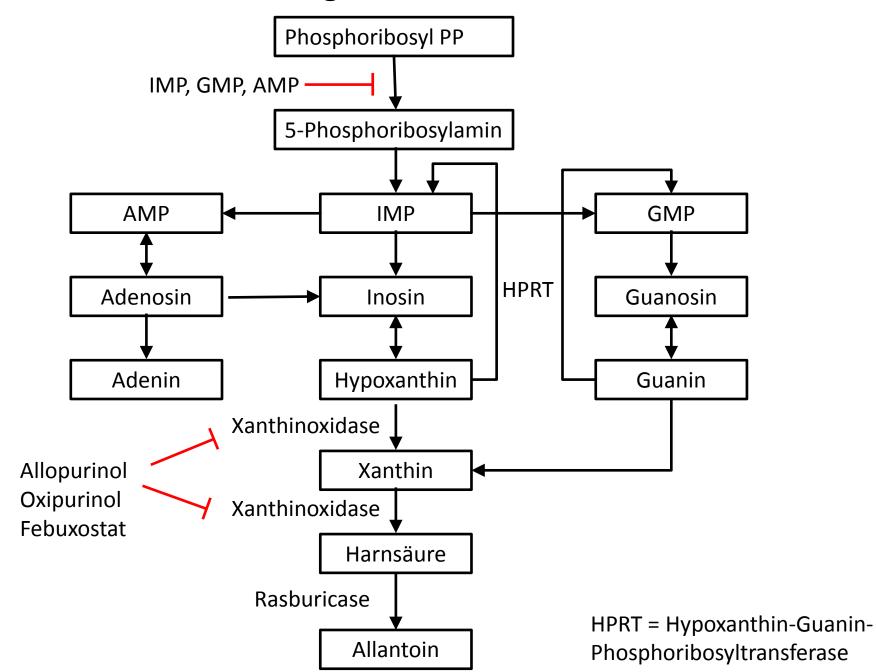
2. Antimetabolite:

Pyrimidinanaloga

- 5-Flurouracil (5-FU)
 - **PD:** Thymidylatsynthaseinhib. (Wirkungsverstärkung durch MTX und Leucovorin), Einbau in DNA
 - **PK:** liquogängig, Inaktivierung durch Dihydropyrimidin-Dehydrogenase
 - Prodrugs: Capecitabin, Tegafur (CYP2A6)
 - NW: zerebelläre Ataxie, Hand-Fuß-Syndrom
 - Ind: breites Antwendungsspektrum


Pyrimidinanaloga

- Cytarabin
 - PD: Umwandlung in Arabinosid-CTP ->


Einbau in DNA

- Ind: AML

- Gemcitabin
 - PD: Einbau in DNA
 - Ind: Pankreaskarzinom

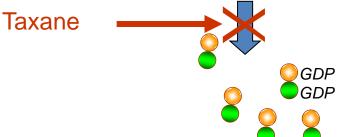
Bildung von Harnsäure

Purinanaloga

- 6-Mercaptopurin
 - wird durch HGPRT zu Thio-IMP
 - **PD:** Inhib. IMP-Dehydrogenase, Adenylsuccinatsynthase und Purinsythese
 - **PK:** Metabol. über TPMT (Cave: Polymorphismus) und Xanthinoxidase (Cave: Allopurinol)
 - Prodrug: Azathioprin NW: Hepatoxisch
- 6-Thioguanin
 - wird durch HGPRT zu Thio-GMP
 - **PD:** Inhib. IMP-Dehydrogenase und Purinsythese, Einbau in die DNA
 - PK: Metabol. über TPMT (Cave: Polymorphismus)

Purinanaloga

- Cladribin
 - **PD:** Einbau in DNA, Inhib.
 - Ribonucletidreductase
 - Zellzyklusunabhängige Wirkung
- Fludarabin
 - **PD:** Inhib. DNA-Polymerase, Ribonucletoidreductase, Einbau in DNA
 - Zellzyklusunabhängige Wirkung


3. Vincaalkaloide und ähnliche:

Wirkungsmechanismus:

Hemmung der Tubulinpolymerisation (Depolymerisation) → Metaphasenarrest

Vincristin Vinblastin Vindesin Vinorelbin Vinca-Alkaloide, Estramustin
Polymerisation

Paclitaxel Docetaxel

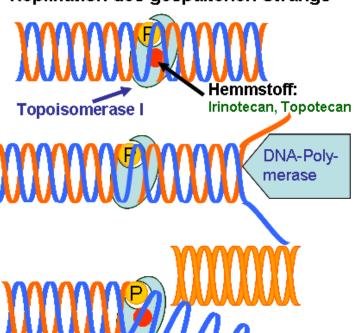
Depolymerisation

Tubulininhibitoren

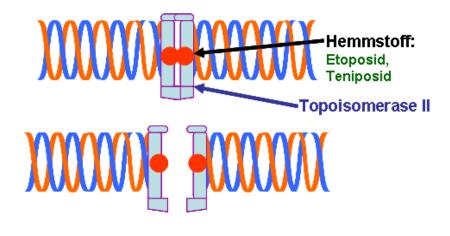
Vincaalkaoide

- Vinblastin, Vinorelbin, Vincristin, Vindesin
- PD: Hemmung der Tubulinpolymerisation
- NW: Neurotox. (Vincristin), SIADH (Vinblastin)

Taxane


- Paclitaxel (CYP2C8, 3A4), Docetaxel (3A4)
- PD: Hemmung der Tubulindepolymerisation
- NW: Allergische Reaktionen, Neurotox.
- Wirkung in Mitosephase

4. Interkalierende Antibiotika und ähnliche:


4.4. Topoisomerasehemmer:

- a) Epipodophyllotoxine: hemmen Topoisomerase II Etoposid = VP16, Tenoposid = VM26
- b) Campthotecin-Derivate: hemmen Topoisomerase I Topotecan, Irinotecan

Topoisomerase I-Hemmung = Strangbruch durch Replikation des gespaltenen Strangs

Topoisomerase II-Hemmung
= Strangbruch durch
Auseinanderweichen der Stränge

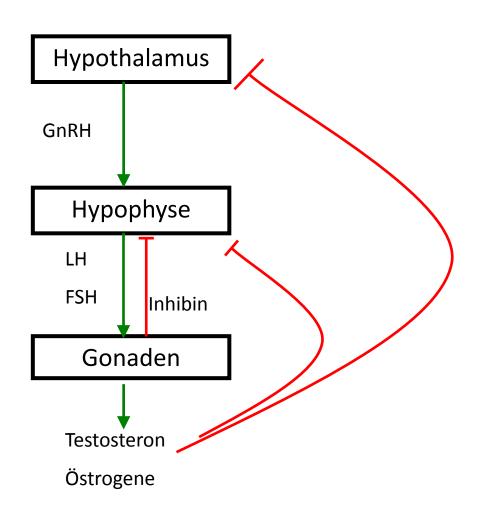
Topoisomerase-Inhibitoren

- Etoposid, Teniposid
 - PD: Topoisomerase-II-Inhib.
 - NW: hohes Risiko für Zweittumore
 - Zellzyklusunabhängig
- Irinotecan (CYP3A4), Topotecan
 - PD: Topoisomerase-I-Inhib.
 - Iriontecan=Prodrug -> aktiver Metabolit = SN38 -> über UGT1 glucoronidiert -> biliär eliminiert (Cave: Polymorphismus)
 - NW: schwere späte Diarrhoe, cholinerges Syndrom
 - S-Phasenspezifische Wirkung

Irinotecan Stoffwechsel:

- 1) Irinotecan löst mehr Durchfall als Topotecan aus
- 2) UGT1A-Polymorphismus (15% = Gilbert-Syndrom) prädisponiert zur Toxizität

Source: Brunton LL, Lazo JS, Parker KL: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Edition: http://www.accessmedicine.com


Interkalierdende

- Anthracylcline
 - Doxo-, Dauno-, Epi-, Idarubicin, Mitoxantron
 - **PD:** Interkalation, Topo-II-Inhib., Radikalbildung, Strangbrüche
 - **NW:** kumulative Cardiotoxizität (Zytoprotektion durch Dexrazoxan), Erytheme
- Dactinomycin
 - PD: wie Anthracycline
- Bleomycin
 - PD: Radikalbildung -> DNA-Fragmentierung
 - PK: Inaktivierung durch Hydrolasen
 - NW: Lungenfibrose, Hauttoxizität

Nicht eindeutig klassifzierbare

- Hydroxyharnstoff: Inhib. Ribonucleotidreductase
- Bortezomib (CYP3A4, 2C19): Proteasominhibitor
- Temsirolimus: mTOR-Inhibitor
- Thalidomid, Lenalidomid: Antiangiogenetisch, NF κ B \downarrow , β_2 -Integrinrezeptor \downarrow , (CAVE: Teratogenität)
- Retionide: Agonist am RAR-α, Ind: APL
- Arsentrioxid: Abbau vom PML-RAR-α-Fusionsprot.,
 Ind: APL
- Anagrelid: PDE2-Inhib. -> Thrombozyt. ↓

Sexualhormone

Einteilung der Zytostatika

6. Hormonelle Therapie:

Glucokortikoide

(Estrogene, Gestagene)

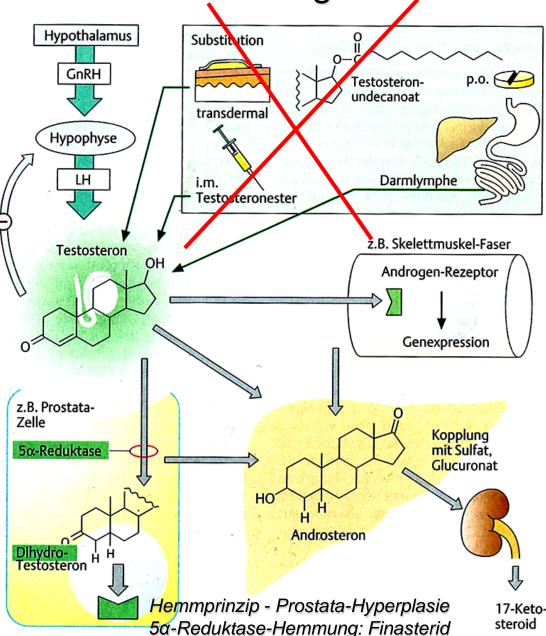
Antiandrogene: Flutamid, Bicalutamid

Antiestrogene:

Tamoxifen, Toremifen, Raloxifen, Fulvestrant

Aromatase-Hemmer:

[Aminogluthetimid – auch CYP-Hemmung] Anastrozol, Letrozol; Formestan


CYP171A-Hemmer = hemmt Synthese von Androgenen und (Glucorticoiden):

Abirateron

GnRH-Agonisten: Buserelin, Goserelin

GnRH-Antagonist: Degarelix

Androgene - Antiandrogene

Hemmprinzipien Prostatacarcinom

- GnRH-"Superagonisten": Buserelin, Goserelin
- GnRH-Antagonisten: Degarelix
- Androgen-Rezeptor-Antagonisten:
 Cyproteronacetat
 Flutamid, Bicalutamid

Androgen-Synthesehemmung: Abirateron

Prostatakarzinom

GnRH-Agonisten: anfangs Hitzewallungen und "disease flare" Potenz/Libidoverlust

Antiandrogene: Potenz/Libidoverlust Gynäkomastie, Hitzewallungen

(Estrogene: Thrombembolierisiko, Ödeme)

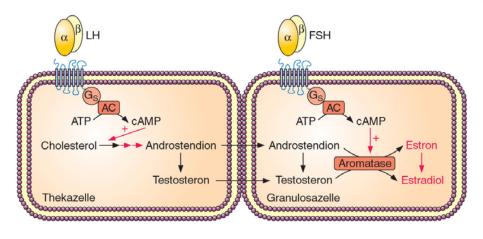
Mammakarzinom

Antiestrogene: Hitzewallungen, Thrombembolien

Gestagene: Übelkeit, Erbrechen, Gewichtszunahme

Aromatase-Hemmer: Hitzewallungen, Kopf/Muskelschmerzen, Ödeme

Hormonmodulatoren

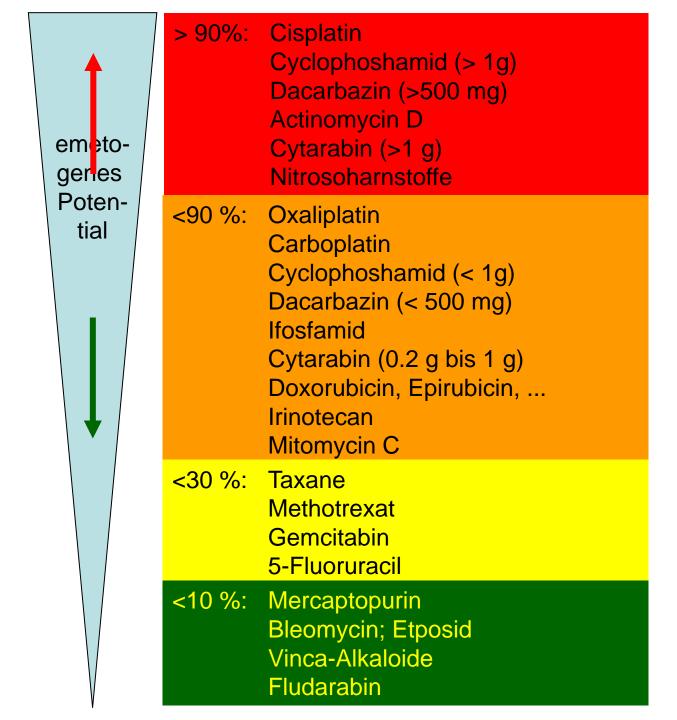

- GnRH-Agonisten
 Buserelin, Goserelin, Leuprorelin, Triptorelin
 - PD: Superagonist -> Rezeptordownregulation
 - NW: Hitzewallungen, Beginn der Th. -> Tumor flare up
- GnRH Antagonist: Degarelix
- Antiandrogene: Cyproteronacetat, Bicalutamid, Flutamid
 - **NW:** Gynäkomastie, Libioverlust, Potenzstörungen
- 5α-Reductaseinhib.: *Finasterid*

Antiestrogene - Antigestagene

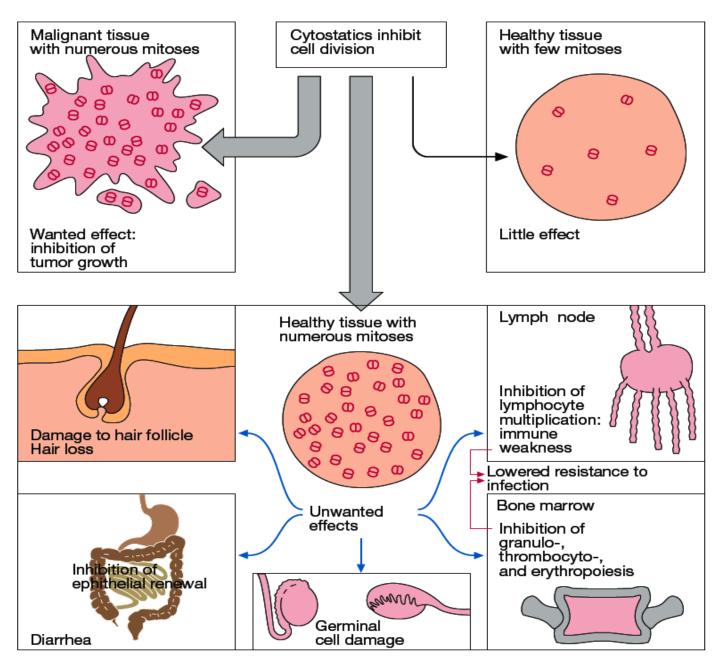
Selektive Estrogenrezeptor Modulatoren (SERM)

wenn kein Gestagen-Zusatz			
	Estradiol	Tamoxifen	Raloxifen
Endometr. CarcRisiko	1	1	
Mamma-CarcRisiko	.	↓	\
Thromboembolie	1	<u>†</u>	†
Linderung klimakt. Beschwerden	1	. 🗼	↓
Knochenmasse	1	↑	†

- Gestagenrezeptor Antagonist: Mifepriston
- Aromatase-Hemmstoffe: steroidal Formestan, nichtsteroidal Anastrozol


postmenopausal im Subkutanen Fettgewebe

Hormonmodulatoren


- Östrogenantagonist: Fulvestrant (CYP3A4)
 - NW: Hitzewallungen
- Aromataseinhibitoren
 Letrozol, Anastrozol, Formestan, Exemestan
 - Ind: postmenopausales Mamakarzinom
- SERMs: Tamoxifen (CYP3A4, 2D6), Raloxifen, Toremifen
 - PD: Partialantagonisten am ER
 - Ind: Mammakarzinom

Nebenwirkungen - Sofortreaktionen

- Übelkeit und Erbrechen: Erregung der Area Postrema direkt und über GI Trakt
 - frühes Erbrechen (1-2h) -> 5-HT₃-Antagonisten
 - spätes Erbrechen (24-48h) -> NK₁-Antagonisten
 - antizipatorisches Erbr. durch Konditionierung
- Fieber, Schüttelfrost, anaphylaktoide Reaktionen:
 - Freisetzung von Zytokinen
 - besonders häufig bei Antikörpern
 - Therapie: Paracetamol, Glucocorticoide, Antihistaminika

2) Spätreaktionen ≈ Proliferationshemmung

Nebenwirkungen einer zytostatischen Chemotherapie

2) Spätreaktionen ≈ Proliferationshemmung Knochenmarksdepression: Infektionen und Blutung

NB: Unterschiede zwischen den einzelnen Substanzen (Leuko-, Thrombo-, Erythropoese) → Nadir?

- → hämatopoetische Wachstumsfaktoren
- → Substitution
- → Antibiotika

geringe Knochenmarksdepression bei:

Bleomycinen, Vincristin (nicht Vinblastin), Cisplatin (nicht Carboplatin!), Dacarbazin

Nebenwirkungen einer zytostatischen Chemotherapie

- 2) Spätreaktionen ≈ Proliferationshemmung
- Schleimhautatrophie, -entzündung, -ulcera: Stomatitis,
 Proctitis → Hygiene; Diarrhoe etc.
- Haarausfall
- Reproduktion: Hemmung der Ovulation/ Spermatogenese Teratogene Wirkung: Kontrazeption!
- Mutagene Wirkung: Sekundärtumoren
- durch Zellzerfall → Hyperurikämie: prophylaktische Gabe von Allopurinol
- Hormonelle Therapie: Nebenwirkungen aus der Hauptwirkung erklärbar

Kardiotoxizität

- kumulative Kardiotox. bei Anthracyclinen durch Radikalbildung -> Kardiomyopathien, Herzinsuffizenz, Arrhythmien
- Trastuzumab, Bevacizumab, Lapatinib, Sorafenib, Sunitinib -> Herzinsuffizienz
- Cyclophosphamid -> Myocarditis

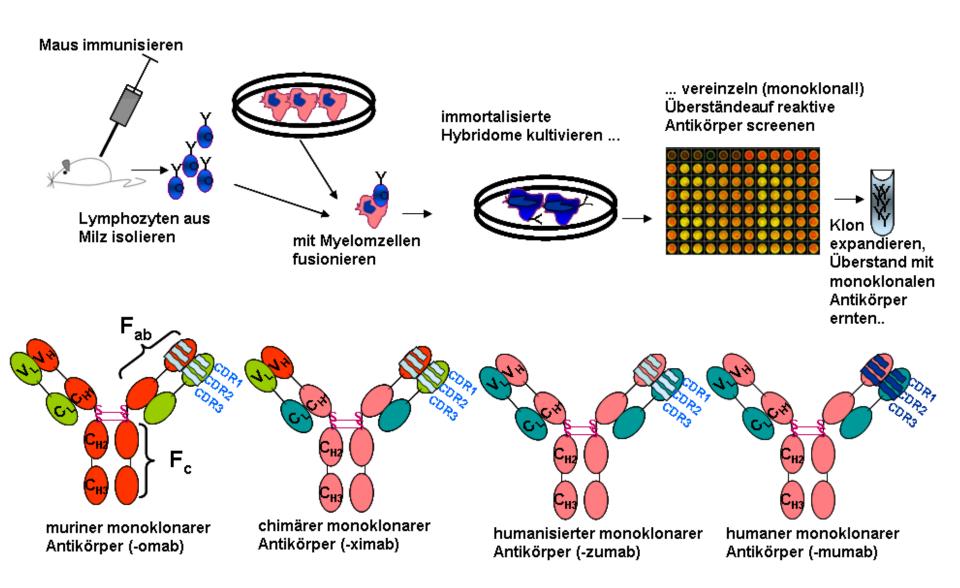
Lungenfibrose

- Bleomycin, Busulfan, Carmustin, Rituximab -> TGFβ 个

Nephrotoxizität

- Cisplatin: Kumulation in Tubulszellen -> ausreichende Hydrierung und NaCl
- Methotrexat: Ausfällung in saurem Harn -> Harnalkalisierung und Hydrierung
- *Vincristin, Vinblastin:* ADH-Sekretion 个 Hypotone Hyperhydratation Hirnödem
- Cyclophosphamid, Ifosphamid, Trofosphamid: hämorrhagische Zystitis durch Acrolein -> MESNA
- Mitomycin C: schädigt Glomerula, kann HUS auslösen

- Neurotoxizität: äussert sich in Parästhesien, Ileus,
 Muskelschwäche, Seh-, Hörstörungen, Obstipation,
 - Vincaalkaoide (v.a. Vincristin): periphere und autonome Neuropathien
 - Taxane: sensorische Neuropathie
 - 5-FU: zerebelläre Ataxie
 - Cisplatin, Carboplatin, v.a. Oxaliplatin: periphere und zentrale Neurophatie durch Platinakkumulation
 - Cisplatin: Ototoxisch -> Hochtonschaden


Hepatotoxizität

- Transaminasenanstieg häufig
- *Methotrexat, 6-Mercaptopurin* unter niedriger Dauertherapie
- Unter Hochdosistherapie führen fast alle Zytostastika zu VOD (veno occlusive disease)

Haut

- 5-FU, Busulfan: Hyperpigmentierung, Dermatitis
- 5-FU, Pemetrexed: Hand-Fuß-Syndrom
- Bleomycin: juckende Erytheme, Ulzera, Bläschen
- Cetuximab, Erlotinib: Akne-ähnlicher Hautausschlag

Vom murinen zum humanen AK

Antikörper

- Trastuzumab Her2/neu
- Bevacizumab VEGF
- Cetuximab EGFR
- Rituximab CD20
- Alemtuzumab CD52
- Natalizumab α4-Integrin
- Brendtuximab CD30
- Gemtuzumab CD33
- Abciximab GPIIb/IIIa

Rituximab & Ofatumumab

Leitantigen: CD20 (reguliert Calziumeinstrom) - auf 90% aller B-Lymphozyten Bindung AK-CD20 → B-Zell-Apoptose; zusätzlich CDC

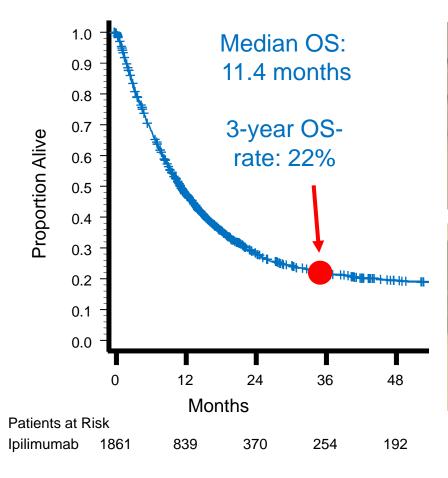
Therapie von B-Zell-Lymphomen (und rheumatoide Arthritis)

Gabe als Infusion

UAW: Grippeähnliche Symptomatik (Symptome sprechen auf NSAR an), Zytokin-Freisetzungssyndrom (Urtikaria, Angioödem, RR▶, Bronchospasmus) Immunsuppression

Alemtuzumab

Leitantigen: CD52 (Oberflächenprotein) - Neutrophile, B- und T-Zellen Zelltod durch ADCC und CDC Therapie von CLL UAW: s.o.

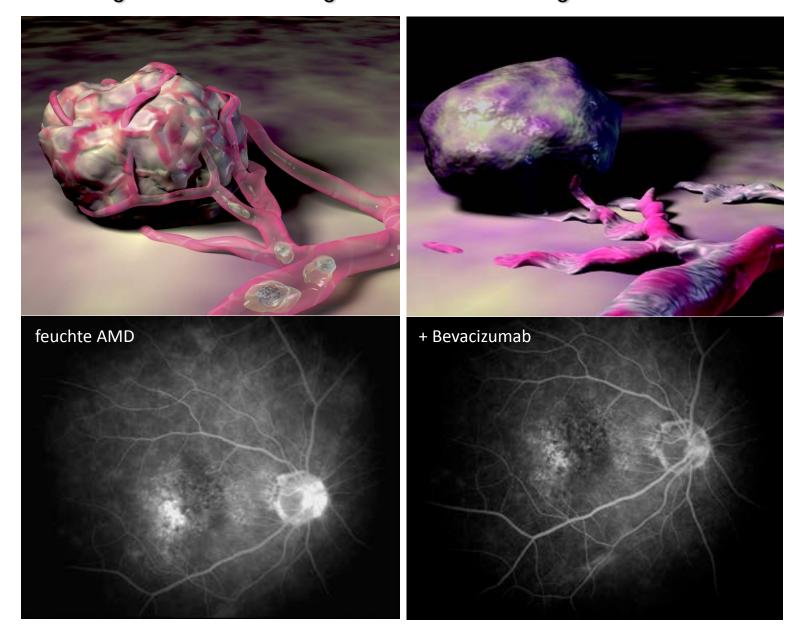

Ipilimumab


Leitantigen: CTLA-4 (Cytotoxic T-Lymphocyte Antigen-4) ist ein Hemmer der T-Zell-Aktivierung. Ipilimumab blockiert das inhibitorische Signal von CTLA-4

→ T-Zell-Aktivierung bzw. -Proliferation → Lymphozyteninfiltration des
Tumors → Tumorzelltod

UAW: T-Zell-Aktivierung → Colitis, Thyreoditis, Hepatitis, Pancreatitis,...

Ipilimumab: Therapie des metastasierenden Melanoms



Hodi et al, N Engl J Med, 2010, p 711-723

Schadendorf et al., ECCO/ESMO 2013

Gefäßneubildung fördert das Wachstum des Tumors und erhöht das Risiko der Metastasierung – VEGF-Hemmung führt zur Rückbildung des Tumors

Bevacizumab

humanisierter monoklonaler Antikörper gegen VEGF-A

VEGF-E

VEGFR3 NRP-2

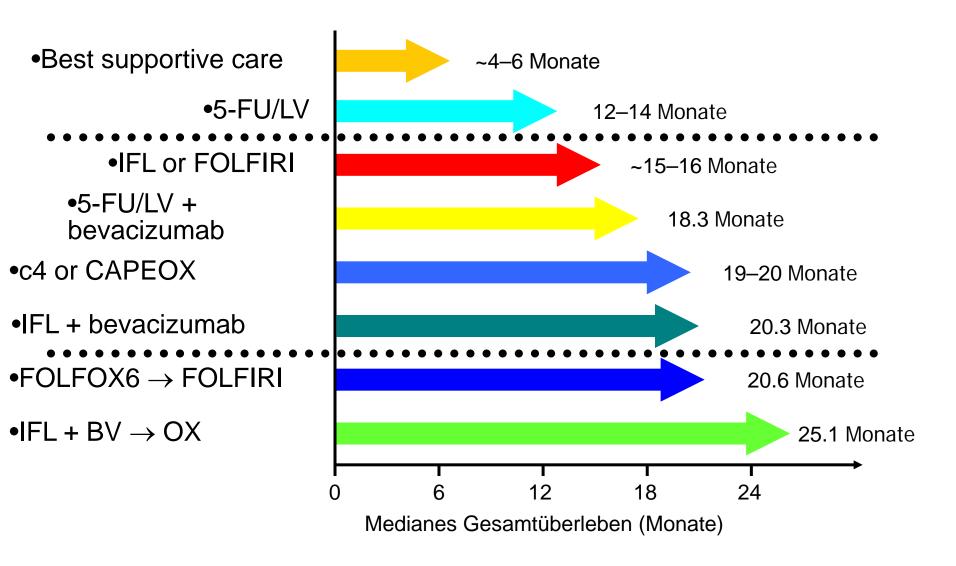
Lymphangiogenesis

NRP-1

Vasculogenesis

Angiogenesis

bei metastasiertem Colon-Karzinom

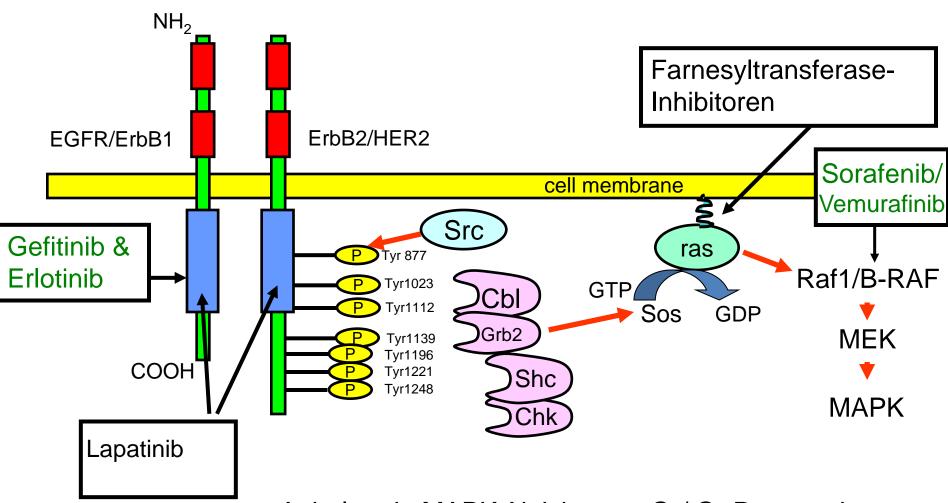

Hemmung der Angiogenese

UAW:

Hypertonie & Proteinurie
(VEGF von Podozyten gebildet)
Neutropenie/Infektionen
Wundheilungsstörung
Darmperforation
Thrombosen/Blutungen
Herzinsuffizienz

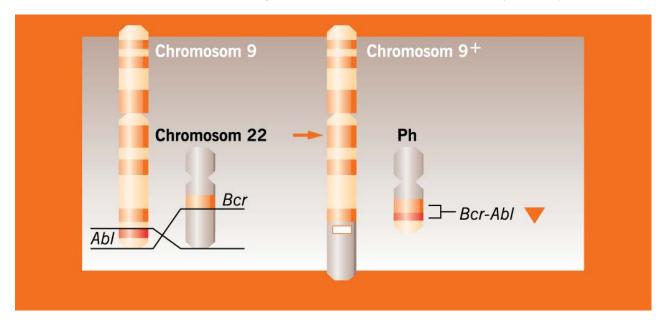
(reversible posteriore Leukoencephalopathie)

Bevacizumab plus Irinotecan, Fluorouracil and Leucovorin for Metastatic Colorectal Cancer. *Hurwitz et al, N Engl J Med 2004;350:2335–2342*

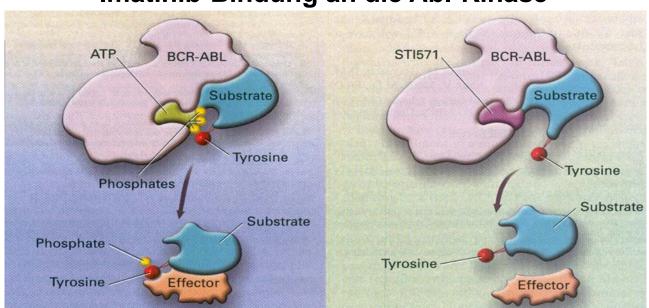

Kinaseinhibitoren

• *Imatinib* – Bcr-Abl-Tyrosinkinase

Lapatinib – EGFR, Her2/neu


• Erlotinib, Gefitinib - EGFR

EGFR/ErbB2 Heterodimer



Anhaltende MAPK Aktivierung: G_0/G_1 Progression

Das Philadelphia Chromosom: t(9;22)

Imatinib-Bindung an die Abl-Kinase

Imatinib, Dasatinib & Nilotinib

- Bcr-Abl Mutation bei chonischer myeloischer Leukämie weiters:
- •PDGF-Rα konstitutiv aktiv bei chronischer Eosinophilenleukämie
- •PDGF-R β konstitutiv aktiv bei myelodysplastischen/-proliferativen Syndromen
- PDGFB überexprimiert bei Dermatofibrosarkoma protuberans
- •c-Kit Mutationen bei gastrointestinalen Stromatumoren

UAW: Übelkeit, Erbrechen, Muskelschmerzen/krämpfe, Schlaflosigkeit Hautausschläge, Ödeme, Pleuraeguß Knochenmarks-Depression (Infektionen, Blutungen)

Erlotinib & Gefitinib

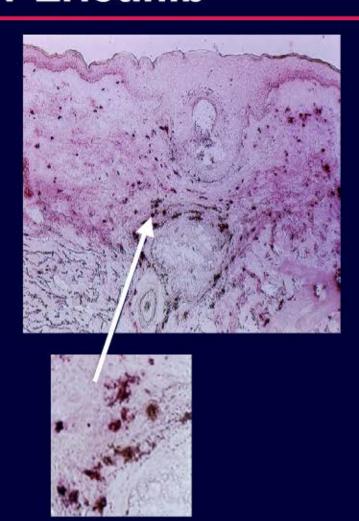
"small molecule inhibitors" von ErbB1/EGFR
Orale Bioverfügbarkeit ca. 60%
Hepatischer Metabolismus: CYP3A4 & CYP2D6
(Polymorphismus!)

UAW: Durchfall, Akne, TA1, (Pneumonitis)

Hohe Affinität bei L858R & Exon 19-Deletion von Gefitinib

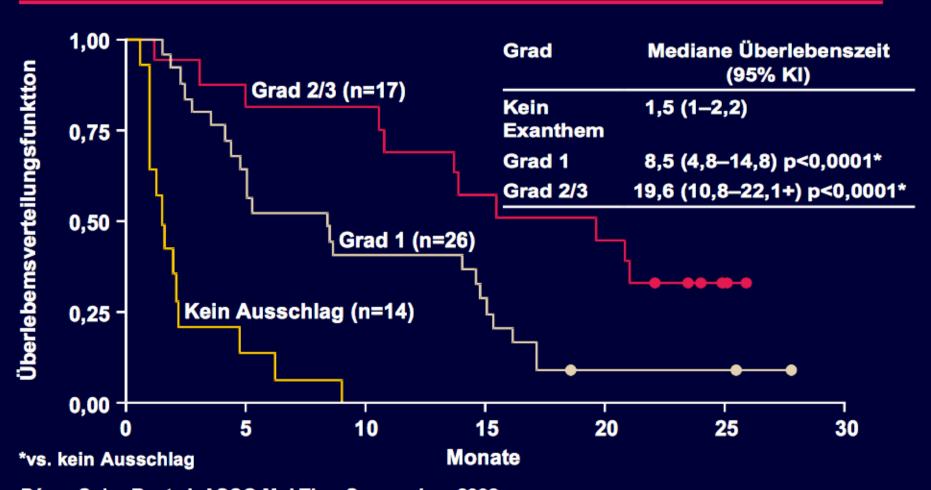
Lapatinib

Kombinierte Hemmung von ErbB1/EGFR und ErbB2 UAW: s.o. und Herzinsuffizienz


Vemurafenib

Hemmung von B-Raf (V600E)

UAW: Stimulation von Wild-typ B-Raf → Sekundär-Tumore


Exanthem unter Erlotinib

Hidalgo M, et al. J Clin Oncol 2001;19:3267-79

Phase-II-Studie mit Erlotinib bei NSCLC: Überlebenszeit in Abhängigkeit vom Schweregrad des Ausschlags

Pérez-Soler R, et al. ASCO Mol Ther Symposium 2002 Data on file, OSI Pharmaceuticals Inc. 2003

Multimodale Kinase-Inhibitoren

Sorafenib

Raf-Kinasen, VEGFR-2, PDGF-Rβ
UAW: Hand-Fuß-Syndrom, Durchfall, Akne, Hypertonie

Sunitinib

VEGFR-1,2 und 3, PDGF-R, RET, c-Kit, CSF1-R/CD115
UAW: Hand-Fuß-Syndrom, Durchfall, Akne, Dysgeusie
Hypertonie & Thromembolien
Hyperthyreose

Pazopanib

VEGFR-1,2 und 3, PDGF-R, c-Kit